ALGORITMA C4.5 UNTUK PREDIKSI BIMBINGAN SISWA BERDASARKAN TIPOLOGI HIPPOCRATES-GALENUS
Keywords:
C4.5, Confusion Matrix, Data Mining, Personality, Prediction, StudentAbstract
The type of personality possessed by a student belived affect their behavior, whether positively or negatively, and if left unattended, it will harm the student. Student guidance is necessary to provide appropriate guidance for the student. This study aims to predict student guidance based on personality by using student data at SMP 1 Negeri Tembilahan. The data collection process was obtained from the BK teacher at SMPN 1 Tembilahan for grade 8 and grade 7. Grade 8 will be used as training data and grade 7 will be used as testing data. 5 parameters were selected for the prediction process and 1 label as the target class. The method used is the C4.5 algorithm to build a decision tree and obtain prediction rules. The results of the study were obtained using Confusion Matrix testing with a prediction accuracy rate of 70%. The ultimate goal of the student guidance prediction process is to have a higher percentage of "Yes" (need guidance) than "No" (don't need guidance) in the prediction results. Therefore, it can be stated that the prediction process model with the C4.5 algorithm is suitable for determining good decision-making results in terms of prediction, and the researcher hopes that after obtaining these results, the BK teacher at SMPN 1 Tembilahan can provide guidance as soon as possible and provide necessary guidance to students who need it.
References
L. A. Briceno-Mena, M. Nnadili, M. G. Benton, and J. A. Romagnoli, “Data mining and knowledge discovery in chemical processes: Effect of alternative processing techniques,” Data-Centric Eng., vol. 3, no. 1, 2022, doi: 10.1017/dce.2022.21.
Yusuf Maulana, Riki Winanjaya, and Fitri Rizki, “Penerapan Data Mining dengan Algoritma C.45 Dalam Memprediksi Penjualan Tempe,” Bull. Comput. Sci. Res., vol. 2, no. 2, pp. 53–58, 2022, doi: 10.47065/bulletincsr.v2i2.163..
N. P. Setyadi, “Penerapan Data Mining Untuk Prediksi Hasil Produksi Karet Menggunakan Algoritma Decision Tree C4 . 5,” vol. 2, no. 7, pp. 1–11, 2022. http://dx.doi.org/10.12928/jstie.v2i1.2613
T. Salsabilla, “Implementasi algoritma c4.5 untuk klasifikasi produk laris sepeda motor honda pada cv cendana motor cepiring 1) 1,2),” vol. 7, no. 2, pp. 164–171, 2022. https://doi.org/10.36341/rabit.v7i2.2489
M. Meilana, Y. Astuti, I. R. Wulandari, I. Sulistyowati, and B. A. Mimartiningtyas, “Algoritma Naive Bayes untuk Mengklasifikasikan Kepribadian Siswa SMP Berdasarkan Tipologi Hippocrates-Galenus,” Sistemasi, vol. 10, no. 2, p. 480, 2021, doi: 10.32520/stmsi.v10i2.1339.
M. Adibulasyhar, “Klasifikasi Karakteristik Kepribadian Manusia Berdasarkan Tipologi Hippocrates-Galenus Menggunakan Metode Fk-Nn,” Univ. Muhammadiyah Gresik, pp. 6–21, 2019.
L. S. Sani and E. Munastiwi, “Karakteristik Siswa Program Tahfidz dalam Proses Menghafal di SMA Al-Muhajirin Purwakarta Ditinjau dari Tipologi Kepribadian Hippocrates-Galenus,” IQ (Ilmu Al-qur’an) J. Pendidik. Islam, vol. 5, no. 01, pp. 87–107, 2022, doi: 10.37542/iq.v5i01.622.
R. Efkelin, R. A. Utami, and Y. Mailintina, “Hubungan Kepemimpinan Dengan Kinerja Perawat di Ruang Anggrek dan Gladiola Rumah Sakit Husada Jakarta,” J. Kesehat. Holist., vol. 7, no. 1, pp. 1–7, 2023, doi: 10.33377/jkh.v7i1.131.
L. L. Yee and M. Ma Ma, “Identification of Poison using C4.5 Algorithm,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 7, no. 2, pp. 218–222, 2020, doi: 10.32628/ijsrset207247.
A. A. Elacio, L. L. Lacatan, A. A. Vinluan, and F. G. Balazon, “Machine Learning Integration of Herzberg ’ s Theory using C4 . 5 Algorithm,” vol. 9, no. 1, pp. 57–63, 2020. https://doi.org/10.30534/ijatcse/2020/1191.12020.
F. M. J. M. Shamrat et al., “Performa n ce Evaluation among ID3 , C4 . 5 , and CART Decision Tree Algorithms,” no. March, pp. 19–20, 2021. DOI:10.1007/978-981-16-5640-8_11
S. Xuanyuan, S. Xuanyuan, and Y. Yue, “Application of C4.5 Algorithm in Insurance and Financial Services Using Data Mining Methods,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/5670784.
D. Fahrudy et al., “INTELLIGENT SYSTEM FOR CLASSIFICATION OF STUDENT PERSONALITY,” vol. 5, no. 1, pp. 1–9, 2022. https://doi.org/10.31598/sintechjournal.v5i1.969
G. S. Reddy and S. Chittineni, “Entropy based C4.5-SHO algorithm with information gain optimization in data mining,” PeerJ Comput. Sci., vol. 7, pp. 1–22, 2021, doi: 10.7717/PEERJ-CS.424. doi: 10.7717/PEERJ-CS.424.
S. Ucha Putri, E. Irawan, F. Rizky, S. Tunas Bangsa, P. A. -Indonesia Jln Sudirman Blok No, and S. Utara, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” Januari, vol. 2, no. 1, pp. 39–46, 2021. https://doi.org/10.30645/kesatria.v2i1.56
P. B. N. Setio, D. R. S. Saputro, and B. Winarno, “PRISMA, Prosiding Seminar Nasional Matematika Klasifikasi dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
A. Nazir, A. Akhyar, Y. Yusra, and E. Budianita, “Toddler Nutritional Status Classification Using C4.5 and Particle Swarm Optimization,” Sci. J. Informatics, vol. 9, no. 1, pp. 32–41, 2022, doi: 10.15294/sji.v9i1.33158.
A. Tumanggor and P. S. Hasugian, “Penerapan Data Mining Untuk Memprediksi Tingkat Kemampuan Anak Dalam Mengikuti Mata Pelajaran Dengan Metode C4.5 Pada SDN 105351 Bakaran Batu,” J. Nas. Komputasi dan Teknol. Inf., vol. 4, no. 1, pp. 57–63, 2021, doi: 10.32672/jnkti.v4i1.2718.
D. Y. Hakim Tanjung, “Optimalisasi Algoritma C4.5 untuk Prediksi Kerusakan Mesin ATM,” Infosys (Information Syst. J., vol. 6, no. 1, p. 12, 2021, doi: 10.22303/infosys.6.1.2021.12-21. http://dx.doi.org/10.22303/infosys.6.1.2021.12-21
Published
How to Cite
Issue
Section
Copyright (c) 2023 Boy Sandy Dwi Nugraha.H, Sarjon Defit, Gunadi Widi Nurcahyo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.