TOPIC ANALYSIS VIDEO DEBAT JELANG PEMILU PRESIDEN DAN WAKIL PRESIDEN TAHUN 2024 DENGAN LATENT DIRICHLET ALLOCATION
Keywords:
Topic Modelling, Latent Dirichlet Allocation, K-MeansAbstract
Several debates were held among presidential and vice presidential candidates to convey their ideas for the 2024 presidential general election (PEMILU). This research analyzes the topics discussed in the debates using Latent Dirichlet Allocation (LDA), K-means Clustering, and word tagging methods for each candidate pair. The K-Means Clustering method yielded more diverse and evenly distributed topics for each candidate pair, while LDA produced fewer topics but was more effective in identifying topics for candidate A. The K- Means Clustering method yielded more diverse and evenly distributed topics for each candidate pair, while LDA produced fewer topics but was more effective in identifying topics for candidate. These are somewhat consistent with previos works. A. In dataset 1 using the LDA model, candidate pairs A have a probability of 60%, B have a probability of 25%, and C have a probability of 0%. In dataset 2 using the K-Means model, candidate pairs A have a probability of 37.04%, B have a probability of 25%, and C have a probability of 17.24%. In dataset 2 using the LDA model, candidate pairs A have a probability of 100%, B have a probability of 40%, and C have a probability of 0%. In dataset 2 using the K-Means model, candidate pairs A have a probability of 35.71%, B have a probability of 14.29%, and C have a probability of 28.57%.
References
Zulhanif, Sudartianto, B. Tantular dan I. G. N. M. Jaya, “Aplikasi Latent Dirichlet Allocation (LDA) Pada Clustering Data Teks,” Jurnal Logika, vol. 7, no. 1, pp. 46-51, 2017.
W. Fuadi, A. Razi og D. Fariadi, «Automasi Penentuan Tren Topik Skripsi Menggunakan Algoritma K-Means Clustering,» Serambi Engineering, vol. 7, nr. 2, pp. 3072-3077, 2022.
G. H. Setiawan, I. M. B. Adnyana, I. G. R. A. Sugiartha dan K. Budiarta, “Ekstraksi Topik Pada Aduan Mahasiswa Dengan Pendeketan Model Latent Dirichlet Allocation (LDA),” dalam Seminar Nasional Penelitian dan Pengabdian Kepada Masyarakat CORISINDO, Bali, 2023.
U. T. Setijohatmo, S. Rachmat, T. Susilawati dan Y. Rahman, “Analisis Metoda Latent Dirichlet Allocation untuk Klasifikasi Dokumen Laporan Tugas Akhir Berdasarkan Pemodelan Topik,” dalam Prosiding 11th Industrial Research Workshop and National Seminar (IRWNS), Bandung, 2020.
B. A. Tondang, M. R. Fadhil, M. N. Perdana, A. Fauzi dan U. S. Janitra, “Analisis Pemodelan Topik Ulasan Aplikasi BNI, BCA, dan BRI Menggunakan Latent Dirichlet Allocation,” INFOTECH: Jurnal Informatika & Teknologi, vol. 4, no. 1, pp. 114-127, 2023.
Y. Matira, Junaidi dan I. Setiawan, “Pemodelan Topik pada Judul Berita Online Detikcom Menggunakan Latent Dirichlet Allocation,” ESTIMASI: Journal of Statistics and Its Application, vol. 4, no. 1, pp. 53-63, 2023.
V. F. Rusdhi dan I. Sari, “Identifikasi Topik Artikel Berita Menggunakan Topic Modelling dengan Latent Dirichlet Allocation,” Jurnal Ilmiah Informatika Komputer, vol. 27, no. 2, pp. 169-176, 2022.
M. S. Hudin, M. A. Fauzi dan S. Adinugroho, “Implementasi Metode Text Mining dan K-Means Clustering untuk Pengelompokan Dokumen Skripsi (Studi Kasus: Universitas Brawijaya),” Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, vol. 2, no. 11, pp. 5518-5524, 2018.
R. Siringoringo, J. Jamaluddin dan R. Perangin-Angin, “Pemodelan Topik Berita Menggunakan Latent Dirichlet Allocation dan K-Means Clustering,” Jurnal Informatika Kaputama (JIK), vol. 4, no. 2, pp. 216-222, 2020.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Ivana Valentina, Aziz Mu’min, Devion Tanrico, Oscar Karnalim

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.