IMPLEMENTASI ALGORITMA NAIVE BAYES CLASSIFIER MENGGUNAKAN FEATURE FORWARD SELECTION DALAM MEMPREDIKSI KETEPATAN MASA STUDI MAHASISWA

Authors

Keywords:

Data Mining, Naive Bayes, Forward Selection, Prediction, Accuracy of Student Study Period

Abstract

Students are one of the important pillars in the life cycle of a higher education institution. One indicator of the success of a study program can be seen from the accuracy of the student's study period. The accuracy of a student's study period refers to the time schedule that the student must achieve from entering the study program to graduating, according to the time span determined by the university. At the Diploma Three (D-III) level, it is said to graduate on time if you have completed the equivalent of three academic years of study and not graduate on time if you have completed more than three academic years. Study. This research aims to influence the quality of study programs, so that it is used as an assessment criterion for accreditation by (BAN-PT). The results of this research are presented in accordance with the research conducted. The data used in this research is academic data for students of the Informatics Management Study Program (D-III) Class 2020 – 2022. The categories used are gender, major, IPS 1 to IPS 4, credits, and GPA. The test results using 129 training data and 40 test data obtained an accuracy of 97.50% using the Naive Bayes method with forward selection. There were 12 students who made late predictions and 28 students made correct predictions. So it can be stated that the Naive Bayes process model is suitable for use in determining good decision results in terms of prediction and classification.

References

M. R. Qisthiano, T. B. Kurniawan, E. S. Negara, and M. Akbar, “Pengembangan Model Untuk Prediksi Tingkat Kelulusan Mahasiswa Tepat Waktu dengan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 3, p. 987, 2021, doi: 10.30865/mib.v5i3.3030.

D. Fitrianah, S. Dwiasnati, H. H. H, and K. A. Baihaqi, “Penerapan Metode Machine Learning untuk Prediksi Nasabah Potensial menggunakan Algoritma Klasifikasi Naïve Bayes,” Fakt. Exacta, vol. 14, no. 2, p. 92, 2021, doi: 10.30998/faktorexacta.v14i2.9297.

W. Fadri, “Klasifikasi Penyakit Hati dengan Menggunakan Metode Naive Bayes,” J. Inf. dan Teknol., vol. 5, no. 1, pp. 32–36, 2023, doi: 10.37034/jidt.v5i1.230.

S. Hartati and H. A. SAN, “Algoritma Naive Bayes untuk Prediksi Kelulusan Mahasiswa,” J. Cakrawala Inf., vol. 2, no. 2, pp. 42–50, 2022, doi: 10.54066/jci.v2i2.234.

F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, and C. Silva, “Classification of Malicious Android Applications Using Naive Bayes and Support Vector Machine Algorithms,” J. Mater. Chem. C, vol. 3, no. 2, pp. 10715–10722, 2022, doi: 10.1039/b000000x.

D. Kurniadi, F. Nuraeni, and S. M. Lestari, “Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana,” J. Sist. Cerdas, vol. 05, no. 02, pp. 63–82, 2022, doi: 10.37396/jsc.v5i2.215.

A. Hadi, “Sistem Penunjang Keputusan Penilaian Kinerja Karyawan Menggunakan Metode 360 Derajat di Politeknik LP3I Kampus Padang Berbasis Web,” J. SANTI - Sist. Inf. dan Tek. Inf., vol. 2, no. 1, pp. 56–64, 2022, doi: 10.58794/santi.v2i1.85.

S. Bahri, “Meningkatkan Kualitas Manajemen Lembaga Pendidikan Islam Melalui Sumber Daya Manusia di Era Pandemi,” Munaddhomah J. Manaj. Pendidik. Islam, vol. 3, no. 1, pp. 43–56, 2022, doi: 10.31538/munaddhomah.v3i1.158.

T. Mildawati, “Efektifitas Pelayanan Akademik Daring Terhadap Kualitas Penyelesaian Studi Akhir Mahasiswa Di Masa Pandemi COVID-19,” vol. 4, pp. 52–79, 2021, doi: 10.5281/zenodo.5579960.

L. Izzatunnisa et al., “Motivasi Belajar Siswa Selama Pandemi dalam Proses Belajar dari Rumah,” J. Pendidik., vol. 9, no. 2, pp. 7–14, 2021, doi: 10.36232/pendidikan.v9i2.811.

H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.

T. H. Hasibuan and D. Mahdiana, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Algoritma C4.5 Pada Uin Syarif Hidayatullah Jakarta,” Skanika, vol. 6, no. 1, pp. 61–74, 2023, doi: 10.36080/skanika.v6i1.2976.

J. G. Perez and E. S. Perez, “Predicting Student Program Completion Using Naïve Bayes Classification Algorithm,” Int. J. Mod. Educ. Comput. Sci., vol. 13, no. 3, pp. 57–67, 2021, doi: 10.5815/IJMECS.2021.03.05.

F. H. Zulfallah, “Implementasi Algoritma KNN Dalam Mengatur Ketepatan Kelulusan Mahasiswa UIN Syarif Hidayatullah Jakarta,”2022.

Published

2023-10-30

How to Cite

[1]
Noliza Safitri, “IMPLEMENTASI ALGORITMA NAIVE BAYES CLASSIFIER MENGGUNAKAN FEATURE FORWARD SELECTION DALAM MEMPREDIKSI KETEPATAN MASA STUDI MAHASISWA”, JTIF, vol. 11, no. 2, pp. 62–68, Oct. 2023.