COMPARATIVE ANALYSIS THE EFFECT OF FUSION ALGORITHM ON HIGH RESOLUTION IMAGES

Authors

  • Yuhendra Padang Institute of Technology

DOI:

https://doi.org/10.21063/jtif.2013.V1.1.1-5

Keywords:

image fusion, high resolution, classification, support vector machines

Abstract

Fusi citra telah banyak diterapkan untuk berbagai keperluan salah satunya digunakan untuk penggabungan dua buah citra atau lebih baik dengan menggunakan data fusi multi sensor. Penggabungan citra fusi dilakukan dengan menyatukan citra yang mempunyai resolusi rendah (multispektral ) dengan citra spasial yang beresolusi tinggi (pankromatik). Pada penelitian ini dilakukan pengujian dan analisis citra satelit dengan menggunakan berbagai metode fusi untuk menentukan kualitas suatu citra secara visual , spekral dan akurasi klasifikasi . Teknik klasifikasi citra fusi menggunakan metode Support Vector Machines (SVMs).

 

Images fusion has been widely applied to imaging sensors for the purpose of resolution merge, image integration, and multi sensor data fusion. In image fusion, a low spatial resolution multispectral image is fused with a higher resolution panchromatic image to produce an image with higher spectral and spatial resolution. In this paper, we investigate the existing fusion methods based on visual ,spectral analyse and classification acuracy. The accuracy of classification result is assessed by means of the support vector machine based on radial basis function kernel. Comparing the performance of various fusion methods, it is shown that the Gram-Schmidt (GS) method yields the best accuracy, followed by the principal component analysis (PCA). The producer’s and user’s accuracies of the GS method are 91.8% and 91.1%, respectively, followed by 90.8% and 90.0% of the PCA method.

References

Andrea, G. and Filippo, N.,.”Pan sharpening of remote sensing images using a multi scale Kalman filter,” the journal of the pattern recognition society, 2007 40, 3568–3577.doi:10.1016/j.patcog.2007.05.002.

Kumar, U., Mukhopadhyay, C., Ramachandra, T.V. ”Pixel based fusion using IKONOS imagery,” International Journal of Recent Trend in Engineering 1(1), 2009,173-175

Vijayaraj, V., Younan, N., O'Hara, C., “Concepts of image fusion in remote sensing application,” IEEE Trans. Geosciences Remote Sensing, 10(6), 2006,3781-3784. doi:10.1109 /IGARSS.2006.973.

Pohl, C. and Van Genderen, J.L,”Multisensor image fusion in remote sensing: concepts, methods, and applications,” Int. J. Remote Sens., 19(5), 1998, 823-854, doi:10.1080/01431160600606890.

Li, D.-C. and Liu, C.-W., “A class possibility based kernel to increase classification accuracy for small data sets using support vector machines, Expert Syst. Appl., 37, 3104–3110, 2010 doi:10.1016/j.eswa.2009.09.019.

Karathanassi, V., Kolokousis, P., Ionnidou, S., “A comparison study on fusion methods using evaluation indicators,” Int. J. Remote Sens., 28(10), 2007, 2309-2341, doi:10.1080/ 014311698215748.

Garzelli, A. Nencini, F. Alparone, L. Aiazzi, B. Baronti, S., "Pansharpening of multispectral image: A critical review and comparison,” in Proc. IGARSS, 1, 81-84, 2004,doi:10.1109/IGARSS.2004.1368950.

Choi, M., Kim, H.C., Cho, N., Kim, H.O,. “An Improved Intensity-Hue-Saturation Method for IKONOS Image Fusion,” submitted to IJRS, 2000.

Shah, V. P., Younan, N. H, and King, R. L.,”An efficient pansharpening method via a combined adaptive PCA approach and contourlets,”IEEE Trans. Geosci. Remote Sens., 4, 2008 doi:10.1109/TGRS.2008.916211

Laben,C. A., and Brower, B. V., “Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening,” United States Eastman Kodak Company (Rochester, NY). US Patent 6011875,URL:http://www.freepatentsonline.com/6011875.html, 2000.

Du, Q., Younan, N. H., King, R., and Shah, V. P., “ On the performance evaluation of pansharpening techniques,” IEEE Geosci. Remote Sens. Lett., 4(4), 518-522,2007,doi:10.1109/ LGRS.2007.909695.

Bovolo, F., Bruzzone, L., Capobianco, L., Garzelli, A., Marchesi, S., “Analysis of effect of pansharpening in change detection,” IEEE Geosci.Remote Sens.Lett.,7(1),518-522, 2010 doi:10.1109/LGRS.2009.2029248.

Otuke, J.R., Blaschke,T., “Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms,” International Journal of Applied Earth Observation and Geoinformation,2010 doi:10.1016/j.jag.2009.11.002

Kavzoglu, T., Colkesen, I., “A kernel functions analysis for support vector machines for land cover classification, “International Journal of Applied Earth Observation and Geoinformation,11,352–359, 2009,doi:10.1016/j.jag.2009.06.002.

Published

2013-04-30

How to Cite

[1]
“COMPARATIVE ANALYSIS THE EFFECT OF FUSION ALGORITHM ON HIGH RESOLUTION IMAGES”, Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 1, no. 1, pp. 1–5, Apr. 2013, doi: 10.21063/jtif.2013.V1.1.1-5.

Most read articles by the same author(s)