MODEL REGRESI LOGISTIK DAN JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI MAHASISWA BERPOTENSI DROP OUT

https://doi.org/10.21063/jtif.2025.V13.1.8-16

Authors

Keywords:

Drop out, Undergraduate students, Logistic Regression, Artificial Neural Network

Abstract

Every university faces students who leave without notice, including those who fail to complete their studies and are declared as dropouts (DO). An initial step in addressing student dropout issues can be undertaken using classification techniques. This study aims to classify dropout students using logistic regression, which is compared with the Artificial Neural Network (ANN) method to categorize data into five classifications: Active, Graduated, Potential to Graduate, Potential DO, and DO. The dataset consists of academic records of undergraduate students from the Computer Science program, obtained from PUSTIPADA at UIN Sumatera Utara. The data includes entry year, study duration, semester GPA, cumulative GPA, credits per semester, total credits, and tuition fees. A total of 1,337 student records were divided into 80% training and 20% testing sets. The logistic regression model achieved an accuracy of 93% on the test data, while the ANN model performed better with an accuracy of 96%. This indicates that ANN is more effective in capturing complex and variable patterns in student data. The findings of this study contribute to academic institutions and educational policymakers, particularly in the Computer Science program, by providing insights for decision-making and developing intervention programs to prevent potential dropouts among students with similar characteristics to those in the dataset.

References

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT Indones. J. Comput. Inf. Technol., vol. 5, no. 1, May 2020, doi: 10.31294/ijcit.v5i1.7951.

E. T. Cahyani, R. Goejantoro, and M. Siringoringo, “Analisis Regresi Logistik Multinomial Bayes untuk Pemodelan Minat Peserta Didik MAN 2 Samarinda Tahun Ajaran 2018/2019,” EKSPONENSIAL, vol. 13, no. 1, p. 1, Jun. 2022, doi: 10.30872/eksponensial.v13i1.874.

M. Tulong, C. Mongi, and M. Mananohas, “Regresi Logistik Multinomial Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Pilihan Perguruan Tinggi Pada Siswa SMA dan SMK di Pulau Karakelang Kabupaten Kepulauan Talaud,” d’CARTESIAN, vol. 7, no. 2, p. 90, Jul. 2018, doi: 10.35799/dc.7.2.2018.21456.

S. Sonang, A. T. Purba, and S. Sirait, “Prediksi Prestasi Mahasiswa Dengan Menggunakan Algoritma Backpropagation,” J. Tek. Inf. Dan Komput. Tekinkom, vol. 5, no. 1, p. 67, Jun. 2022, doi: 10.37600/tekinkom.v5i1.512.

E. Setyowati and S. Mariani, “Penerapan Jaringan Syaraf Tiruan dengan Metode Learning Vector Quantization (LVQ) untuk Klasifikasi Penyakit Infeksi Saluran Pernapasan Akut (ISPA),” vol. 4, 2021.

K. W. Wan et al., “Evaluation of the performance of traditional machine learning algorithms, convolutional neural network and AutoML Vision in ultrasound breast lesions classification: a comparative study,” Quant. Imaging Med. Surg., vol. 11, no. 4, pp. 1381–1393, Apr. 2021, doi: 10.21037/qims-20-922.

T. Si, J. Bagchi, and P. B.C. Miranda, “Artificial Neural Network training using metaheuristics for medical data classification: An experimental study,” May 2022.

Y. Apriyani, “Penerapan Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Nilai UN Siswa SMPN 2 Cihaurbeuti”.

M. Ikhsan, A. Armansyah, and A. A. Tamba, “Implementasi Jaringan Syaraf Tiruan Backpropagation Pada Klasifikasi Grade Teh Hitam,” J. Sist. Komput. Dan Inform. JSON, vol. 4, no. 2, p. 387, Dec. 2022, doi: 10.30865/json.v4i2.5312.

N. Hamdani, A. Setyanto, and S. Sudarmawan, “Perbandingan Algoritma Regresi Logistic Dan Neural Network Pada Prediksi Nilai Hasil Pembinaan Dan Kelulusan Tepat Waktu,” Respati, vol. 15, no. 1, p. 30, Mar. 2020, doi: 10.35842/jtir.v15i1.328.

D. Makatulung and A. L. Samal, “Manajemen Waktu Bagi Mahasiswa Hampir Drop Out di IAIN Manado,” J. Islam. Educ. Leadersh., vol. 1, no. 2, pp. 136–152, Jan. 2022, doi: 10.30984/jmpi.v1i2.157.

D. R. N. Fauziyah, “Analisis Data Menggunakan Multiple Logistic Regression Test di Bidang Kesehatan Masyarakat dan Klinis,” Apr. 2019.

M. Fahmuddin, M. K. Aidid, and M. J. Taslim, “Implementasi Analisis Regresi Logistik dengan Metode Machine Learning untuk Mengklasifikasi Berita di Indonesia,” Nov. 2023.

E. Komariah, B. C. Octariadi, and A. C. Siregar, “Penerapan Jaringan Syaraf Tiruan untuk Memprediksi Hasil Produksi Kelapa Sawit Menggunakan Backpropagation,” Jutisi J. Ilm. Tek. Inform. Dan Sist. Inf., vol. 12, no. 2, p. 484, Aug. 2023, doi: 10.35889/jutisi.v12i2.1342.

R. S. Tantika and A. Kudus, “Penggunaan Metode Support Vector Machine Klasifikasi Multiclass pada Data Pasien Penyakit Tiroid,” Bdg. Conf. Ser. Stat., vol. 2, no. 2, pp. 159–166, Jul. 2022, doi: 10.29313/bcss.v2i2.3590.

S. Andjani Musofwan, “Metode Penelitian, Repositoty.upi.edu.” Repository UPI, Aug. 15, 2022.

G. A. B. Suryanegara, A. Adiwijaya, and M. D. Purbolaksono, “Peningkatan Hasil Klasifikasi pada Algoritma Random Forest untuk Deteksi Pasien Penderita Diabetes Menggunakan Metode Normalisasi,” J. RESTI Rekayasa Sist. Dan Teknol. Inf., vol. 5, no. 1, pp. 114–122, Feb. 2021, doi: 10.29207/resti.v5i1.2880.

Published

2025-04-30

How to Cite

[1]
A. Armansyah and S. Suhardi, “MODEL REGRESI LOGISTIK DAN JARINGAN SYARAF TIRUAN UNTUK KLASIFIKASI MAHASISWA BERPOTENSI DROP OUT”, Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 13, no. 1, pp. 8–16, Apr. 2025.