DATA MINING ANALYSIS OF SHELL OIL SALES USING THE C4.5 ALGORITHM AT CV. HARAPAN KARYA MANDIRI
DOI:
https://doi.org/10.21063/jtif.2025.V13.2.48-56Keywords:
Analysis, Data Mining, Sales, C4.5 AlgorithmAbstract
This study focuses on the analysis of Shell oil sales at CV. Harapan Karya Mandiri (HKM) Bengkulu, which faces challenges in predicting consumer demand and managing stock efficiently. CV. HKM Bengkulu is an official distributor of PT. Shell Indonesia, competing in the vehicle lubricant industry. To address the challenges of competition and demand uncertainty, this study applies data mining methods, particularly the C4.5 algorithm, to analyze historical sales data and uncover significant patterns and trends. Data mining is a technique that helps identify hidden patterns and insights in large datasets to support decision-making. The C4.5 algorithm is employed to build a predictive model through a decision tree, which classifies data based on certain variables such as oil type, sales region, or time period. This model is expected to assist CV. HKM in predicting customer demand, optimizing sales strategies, and improving stock planning efficiency. Additionally, the results from the C4.5 algorithm provide practical benefits by enabling CV. HKM to optimize inventory management, target marketing efforts more effectively, and enhance operational efficiency. The insights derived from the model support data-driven decisions, improve business performance, and maximize profits by aligning stock levels with demand trends, thereby reducing wastage and improving profitability.
References
[1] J. B. Ginting, “Kemajuan Teknologi Informasi dalam Perkembangan Bisnis Global Advances in Information Technology in Global Business Development,” Student Scientific Creativity Journal (SSCJ), vol. 2, no. 4, p. 72, 2024.
[2] R. Purba, “Peran Teknologi Informasi Dalam Meningkatkan Efisiensi Operasional Bisnis Internasional,” Digital Bisnis: Jurnal Publikasi Ilmu Manajemen dan E-Commerce, vol. 2, no. 4, p. 455, 2023.
[3] D. Septari, “Implementasi Machine Learning Untuk Prediksi Penjualan Oli Shell Pada CV. Harapan Karya Mandiri Bengkulu,” Jurnal Media Infotama, vol. 20, no. 2, p. 425, 2024.
[4] M. P. U. O. P. P. S. H. C. V. B. K. M. M. B. K. S. D. K. I. & J. J. Learning, “Implementasi Machine Learning Untuk Prediksi,” Jurnal Media Infotama, vol. 20, no. 2, p. 341139, 2024.
[5] A. N. A. d. H. Nurdiyanto, “Data Mining Clustering Dalam Pengelompokan Buku Perpustakaan Menggunakan Algoritma K-Means,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 4, no. 2, p. 156, 2023.
[6] S. A. Rahmah, “Review Terbaru Tentang Klasterisasi Data Mining Menggunakan Metode K-Means: Tantangan dan Aplikasi,” Djtechno: Jurnal Teknologi Informasi, vol. 5, no. 4, p. 468, 2024.
[7] P. S. S. M. & R. F. Azura, “Analisa Penjualan Produk Oli Dengan Metode Data Mining Asosiasi Algoritma Apriori Pada PT. Mitra Petra Sejahtera,” Jurnal …, vol. 2, no. 1, pp. 8–15, 2021.
[8] R. R., K. K., I. Zulfa, “Implementasi Data Mining untuk Menentukan Strategi Penjualan Buku Bekas dengan Pola Pembelian Konsumen Menggunakan Metode Apriori (Studi Kasus: Kota Medan),” TEKNIKA: Jurnal Sains dan Teknologi, vol. 16, no. 1, pp. 69–82, 2020.
[9] S. M., L. B. Alwendi, “Aplikasi Data Mining untuk Menentukan Lulusan Mahasiswa Tepat Waktu,” Jurnal Advance Research Informatika, vol. 3, no. 1, p. 3025, 2024.
[10] R. C. N. S. Syafiatun Ihsani Luthfiyah, “Sistem Pendukung Keputusan (SPK) Penentuan Algoritma dan Metode Penelitian dengan Metode Simple Additive Weighting (SAW),” JIRE (Jurnal Informatika & Rekayasa Elektronika), vol. 5, no. 2, p. 6754, 2022.
[11] P. A. B. H. F. S. Kiki Ananda Mustari, “Implementasi Data Mining Pada Instansi Pemerintahan (Systematic Literature Review),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 3, p. 3354, 2024.
[12] N. Nuris, “Analisis Prediksi Harga Rumah Pada Machine Learning Menggunakan Metode Regresi Linear,” EXPLORE, vol. 14, no. 2, pp. 108–112, 2024.
[13] R. Sari, “Teknik Data Mining Menggunakan Classification Dalam Sistem Penunjang Keputusan Peminatan SMA Negeri 1 Polewali,” IJNS – Indonesian Journal on Networking and Security, vol. 5, no. 1, p. 768, 2016.
[14] N. Syaiful Zuhri Harahap, “Teknik Data Mining Untuk Penentuan Paket Hemat Sembako dan Kebutuhan Harian dengan Menggunakan Algoritma FP-Growth (Studi Kasus di Ulfamart Lubuk Alung),” Informatika: Jurnal Ilmiah Fakultas Sains dan Teknologi Universitas Labuhanbatu, vol. 7, no. 3, p. 2516, 2019.
[15] S. T. Sri Astuti, “Penerapan Data Mining Dalam Menentukan Penerima Beasiswa UPZ (Unit Pengumpulan Zakat) Menggunakan Algoritma K-Means,” JSI; Jurnal Sistem Informasi (E-Journal), vol. 13, no. 2, p. 2289, 2021.
[16] M. & A. Hijrah, “Analisis RapidMiner dan Weka dalam Memprediksi Kualitas Kinerja Karyawan Menggunakan Metode Algoritma C4.5,” Multi Data Palembang Journal, vol. 9, no. 2, p. 1965, 2022.
[17] H. A. Evicienna, “Algoritma C4.5 untuk Prediksi Hasil Pemilihan Legislatif DPRD DKI Jakarta,” Techno Nusa Mandiri, vol. 9, no. 1, p. 675, 2013.
[18] H. & S. H. L. Syafputra, “Klasifikasi Penjualan Perhiasan Menggunakan Metode Decision Tree Algoritma C4.5 (Studi Kasus: Toko Emas Berkat Famili),” JISI, vol. 20, no. 2, p. 563, 2024.
[19] Syafi, M. Q., & Alamsyah. (2022). Increasing accuracy of heart disease classification on C4.5 algorithm based on Information Gain Ratio and Particle Swarm Optimization using Adaboost ensemble. Journal of Advances in Information Systems and Technology, 4(1), 100–112.
[20] M. T. F. Rusito, “Implementasi Metode Decision Tree dan Algoritma C4.5 untuk Klasifikasi Data Nasabah Bank,” INFOKAM, vol. 13, no. 1, p. 5, 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Seci Monika, Muhammad Husni Rifqo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
Authors retain copyright and grant the journal the right of first publication.
The work may be shared and adapted, even for commercial purposes, as long as appropriate credit is given and any new creations are licensed under the identical terms.
						









