ALGORITMA C4.5 UNTUK MENENTUKAN TINGKAT KELAYAKAN MOTOR BEKAS YANG AKAN DIJUAL
DOI:
https://doi.org/10.21063/jtif.2016.V4.1.16-22Kata Kunci:
data mining, C4.5, pohon keputusan, kelayakan, decision trees, feasibilityAbstrak
Pohon keputusan merupakan representasi sederhana dari teknik klasifikasi yang merupakan proses pembelajaran suatu fungsi tujuan yang memetakan tiap himpunan atribut ke satu dari kelas yang didefinisikan sebelumnya. Implementasi algoritma C4.5 dalam menentukan tingkat kelayakan motor bekas yang akan dijual untuk membantu proses pengklasifikasian kondisi motor bekas. Pohon keputusan dapat menemukan hubungan tersembunyi antara sejumlah variabel input dengan sebuah variabel target dari data penjualan motor bekas. Pada algoritma C4.5 dilakukan penghitungan entropy dan gain information untuk memperoleh node akar dan node lainnya. Dengan kemampuannya untuk mem-break down proses pengambilan keputusan yang kompleks menjadi lebih mudah. Pohon keputusan yang dihasilkan dari kasus yang diangkat menunjukkan bahwa ada beberapa atribut yang mempengaruhi dalam penentuan kelayakan motor bekas yakni aki, mesin, bodi, cat dan aksesoris.
Decision tree is a simple representation of a classification technique that is a learning process an objective function that maps each set of attributes to one of the classes defined previously. C4.5 algorithm implementation in determining the feasibility of a used motorcycle that will be sold to help the classification process conditions used motorcycles. Decision trees can discover the hidden relationship between the number of input variables with a target variable of the data used bike sales. At C4.5 algorithms were calculated entropy and gain information to obtain root node and other nodes. With its ability to break down complex decision-making process becomes easier. The resulting decision tree of the cases raised shows that there are some attributes that affect the determination of the feasibility of a used motorcycle battery, engine, body, paint and accessories.
Referensi
A. S. GALATHIYA, A. P. G. A. C. K. B. 2012. Improved Decision Tree Induction Algorithm with Feature Selection, Cross Validation, Model Complexity and Reduced Error Pruning. International Journal of Computer Science and Information Technologies, 3(2), 5.
BRIJESH KUMAR BARADWAJ, S. P. 2011. Mining Educational Data to Analyze Students‟ Performance. International Journal of Advanced Computer Science and Applications, 2, 7.
HEMLATA SAHU, S. S., SEEMA GONDHALAKAR 2012. A Brief Overview on Data Mining Survey. International Journal of Computer Technology and Electronics Engineering, 1, 8.
IHSAN A. KAREEM, M. G. D. 2014. Improved Accuracy for Decision Tree Algorithm Based on Unsupervised Discretization. International Journal of Computer Science and Mobile Computing, 3, 8.
MARK HALL, E. F., GEOFFREY HOLMES, BERNHARD PFAHRINGER PETER REUTEMANN, IAN H. WITTEN 2009. The WEKA Data Mining Software: An Update. 11, 9.
MUHAMMAD NAEEM AHMED KHAN, S. A. Q. A. N. R. 2013. Gender Classification With Decisision Trees. International Journal of Signal Processing, 6, 12.
P.YASODHA, M. K. 2011. Analysis of a Population of Diabetic Patients Databases in Weka Tool. International Journal of Scientific & Engineering Research, 2.
PRIYADHARSINI.C, D. A. S. T. 2014. An Overview of Knowledge Discovery Database and Data mining Techniques. International Journal of Innovative Research in Computer and Communication Engineering, 2, 8.
SEEMA SHARMA, J. A., SANJEEV SHARMA 2013. Classification Through Machine Learning Technique: C4.5 Algorithm based on Various Entropies. International Journal of Computer Applications, 82, 8.
SINGH, S. B. G. N. 2011. THREE PHASE ITERATIVE MODEL OF KDD.International Journal of nformation Technology and Knowledge Management, 4, 3.
MINTWAL, S. N. M. K. 2013. Comparison the Various Clustering and Classification Algorithms of WEKA Tools. International Journal of Advanced Research in Computer Science and Software Engineering, 3, 13.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Jurnal ini dilisensikan berdasarkan Lisensi Internasional Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
Penulis memegang hak cipta dan memberikan jurnal hak penerbitan pertama.
Karya tersebut dapat dibagikan dan diadaptasi, bahkan untuk tujuan komersial, selama penghargaan yang sesuai diberikan dan setiap kreasi baru dilisensikan dengan ketentuan yang sama.