PENERAPAN MULTILAYER PERCEPTRON UNTUK KLASIFIKASI JENIS KULIT SAPI TERSAMAK
DOI:
https://doi.org/10.21063/jtif.2016.V4.1.1-7Keywords:
multilayer perceptron, klasifikasi, tekstur, kulitAbstract
Penelitian ini bertujuan menerapkan metode multilayer perceptron (MLP) untuk mengklasifikasikan jenis kulit sapi tersamak berdasarkan ciri teksturnya. Terdapat empat jenis kulit sapi tersamak yang dijadikan sampel yaitu kulit samak nabati, kulit samak semi krom, kulit boks, dan kulit pull up. Data yang digunakan terdiri atas 24 citra kulit nabati, 16 buah citra kulit semi krom, 12 citra kulit boks, dan 8 citra kulit pull up. Tingkat ketepatan klasifikasi mencapai 87,83%. Jenis kulit yang bisa diidentifikasi paling tepat adalah kulit pull up dengan tingkat akurasi 98,75%.
References
BSN. (1989). SNl 06-0234-1989 Kulit boks, mutu dan cara uji. Badan Standarisasi Nasional.
BSN. (1996). SNI 06-4363-1996 Kulit oil pull up dari kulit sapi untuk atasan sepatu. Badan Standarisasi Nasional.
BSN. (2009). SNI 0234:2009 Kulit bagian atas alas kaki - kulit boks. Badan Standarisasi Nasional.
Falcão, L., & Araújo, M. E. M. (2013). Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV-Vis and chemical tests. Journal of Cultural Heritage, 14(6), 499–508. http://doi.org/10.1016/j.culher.2012.11.003
Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, SMC3(6),610–621.http://doi.org/10.1109/TSMC.1973.4309314
Hastutiningrum, S. (2009). Pemanfaatan Limbah Kulit Split Industri Penyamakan Kulit Untuk Glue Dengan Hidrolisis Kolagen. Teknologi, 2.
Hoang, K., Wen, W., Nachimuthu, A., & Jiang, X. L. (1997). Achieving automation in leather surface inspection. Computers in Industry, 34(1), 43–54. http://doi.org/10.1016/S01663615(97)00019-5
Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc.
Khan, R., Hanbury, A., Stöttinger, J., & Bais, A. (2012). Color based skin classification. Pattern Recognition Letters, 33(2), 157–163. http://doi.org/10.1016/j.patrec.2011.09.032
Kwon, J.-W., Choo, Y.-Y., Choi, H.-H., Cho, J.-M., & KiI, G.-S. (2004). Development of leather quality discrimination system by texture analysis. In TENCON 2004. 2004 IEEE Region 10 Conference (Vol. A, pp. 327–330 Vol. 1). http://doi.org/10.1109/TENCON.2004.1414423
Lam, H. K., Ekong, U., Liu, H., Xiao, B., Araujo, H., Ling, S. H., & Chan, K. Y. (2014). A study of neural-networkbased classifiers for material classification. Neurocomputing, 144, 367–377. http://doi.org/10.1016/j.neucom.2014.05.019
Negnevitsky, Michael. (2005). Artificial Intelligence: A Guide to Intelligent Systems (2nd ed.). Pearson Education.
Wang, B., Wang, H., & Qi, H. (2010). Wood recognition based on grey-level cooccurrence matrix. In 2010 International Conference on Computer Application and System Modeling (ICCASM) (Vol. 1, pp. V1–269–V1–272). http://doi.org/10.1109/ICCASM.2010.5619388
Wang, L., & Liu, C. (2007). Tanning Leather Classification using an Improved Statistical Geometrical Feature Method. In 2007 International Conference on Machine Learning and Cybernetics (Vol. 3, pp. 1765–1768). http://doi.org/10.1109/ICMLC.2007.4370433
Downloads
Published
Issue
Section
License
This journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).
Authors retain copyright and grant the journal the right of first publication.
The work may be shared and adapted, even for commercial purposes, as long as appropriate credit is given and any new creations are licensed under the identical terms.