TINJAUAN PUSTAKA SISTEMATIS: PENERAPAN DATA MINING TEKNIK CLUSTERING ALGORITMA K-MEANS

Penulis

  • Sekar Setyaningtyas STMIK Tegal , STMIK Tegal
  • Bangkit Indarmawan Nugroho Sekolah Tinggi Manajemen Informatika dan Komputer Tegal , Sekolah Tinggi Manajemen Informatika dan Komputer Tegal
  • Zaenul Arif Sekolah Tinggi Manajemen Informatika dan Komputer Tegal , Sekolah Tinggi Manajemen Informatika dan Komputer Tegal

DOI:

https://doi.org/10.21063/jtif.2022.V10.2.52-61

Kata Kunci:

data mining, clustering, K-Means, systematic literature review

Abstrak

Data Mining adalah metode untuk menganalisis pola dan karakteristik di masa depan serta untuk mengumpulkan informasi tak terduga yang belum pernah terlihat sebelumnya dari database yang besar. Dalam data mining, clustering adalah salah satu teknik yang berguna untuk analisis data. Salah satu algoritma data mining adalah algoritma K-Means yang merupakan teknik clustering berdasarkan pembagian jarak. Tujuan yang ingin dicapai dalam paper ini yakni menganalisis teknik clustering menggunakan algoritma K-Means dalam data mining dengan melakukan review secara mendalam dan mengevaluasi penelusuran melalui literatur terpilih berdasarkan kriteria tertentu dan studi yang dipilih akan diproses untuk menjawab pertanyaan penelitian. Tinjauan Pustaka Sistematis (Systematic Literature Review/SLR) merupakan sebuah metode penelitian yang bertujuan untuk mengidentifikasi dan mengevaluasi hasil penelitian dengan teknik terbaik berdasarkan prosedur yang spesifik dari hasil perbandingan. Berdasarkan pemilihan literatur publikasi jurnal, Pattern Recognition, Knowledge-Based System, Applied Soft Computing dan IEEE Access dapat menjadi rujukan utama terkait algoritma K-Means. Metode atau teori perhitungan jarak yang sering digunakan terkait algoritma K-Means yakni Euclidean Distance, Elbow Criterion, dan Lloyd Algorithm. Hasil perbandingan metode menunjukkan bahwa Euclidean Distance memiliki keunggulan perhitungan jarak yang lebih baik.

 

Kata Kunci—data mining, clustering, K-Means, tinjauan pustaka sistematis.

Referensi

S. Jambekar and Z. Saquib, “Prediction of Crop Production in India Using Data Mining Techniques,” 2018 Fourth Int. Conf. Comput. Commun. Control Autom., pp. 1–5, 2018.

Y. Yin, L. Long, and X. Deng, “Dynamic Data Mining of Sensor Data,” IEEE Access, vol. 8, pp. 41637–41648, 2020, doi: 10.1109/ACCESS.2020.2976699.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

P. O. Olukanmi and B. Twala, “K-Means-sharp: Modified centroid update for outlier-robust K-Means clustering,” 2017 Pattern Recognit. Assoc. South Africa Robot. Mechatronics Int. Conf. PRASA-RobMech 2017, vol. 2018-Janua, pp. 14–19, 2017, doi: 10.1109/RoboMech.2017.8261116.

M. S. Yang and K. P. Sinaga, “A feature-reduction multi-view K-Means clustering algorithm,” IEEE Access, vol. 7, pp. 114472–114486, 2019, doi: 10.1109/ACCESS.2019.2934179.

M. A. Mercioni and S. Holban, “Evaluating hierarchical and non-hierarchical grouping for develop a smart system,” 2018 13th Int. Symp. Electron. Telecommun. ISETC 2018 - Conf. Proc., pp. 1–4, 2018, doi: 10.1109/ISETC.2018.8583997.

pallavi pallu, R. Suryawnashi, A. Dubey, and A. Abha Choubey, “A Systematic Review on K-Means Clustering Techniques Related papers A Novel Approach for Dat a Clust ering using Improved K-Means Algorit hm A Systematic Review on K-Means Clustering Techniques,” Int. J. Sci. Res. Eng. Technol., vol. 6, no. 6, 2017.

W. DIng, Y. Zhang, Y. Sun, and T. Qin, “An Improved SFLA-Kmeans Algorithm Based on Approximate Backbone and Its Application in Retinal Fundus Image,” IEEE Access, vol. 9, pp. 72259–72268, 2021, doi: 10.1109/ACCESS.2021.3079119.

S. S. Yu, S. W. Chu, C. M. Wang, Y. K. Chan, and T. C. Chang, “Two improved K-Means algorithms,” Appl. Soft Comput. J., vol. 68, pp. 747–755, 2018, doi: 10.1016/j.asoc.2017.08.032.

C. Kamila, M. Adiyatma, G. R. Namang, R. Ramadhan, F. Syah, and D. Redaksi, “Pendidikan Teknik Informatika dan Komputer, Fakultas Teknik,” J. Intech, vol. 2, no. 1, p. 1, 2021.

A. Ashabi, S. Bin Bin Sahibuddin, and M. Salkhordeh Salkhordeh Haghighi, “The systematic review of K-Means clustering algorithm,” ACM Int. Conf. Proceeding Ser., pp. 13–18, 2020, doi: 10.1145/3447654.3447657.

D. W. L. Pamungkas and S. Rochimah, “Pengujian Aplikasi Web - Tinjauan Pustaka Sistematis,” J. IPTEK, vol. 23, no. 1, pp. 17–24, 2019, doi: 10.31284/j.iptek.2019.v23i1.459.

R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks,” J. Softw. Eng., vol. 1, no. 1, pp. 1–16, 2015.

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering - A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009, doi: 10.1016/j.infsof.2008.09.009.

M. Capó, A. Pérez, and J. A. Lozano, “An efficient approximation to the K-Means clustering for massive data,” Knowledge-Based Syst., vol. 117, pp. 56–69, 2017, doi: 10.1016/j.knosys.2016.06.031.

L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, “Fast density clustering strategies based on the K-Means algorithm,” Pattern Recognit., vol. 71, pp. 375–386, 2017, doi: 10.1016/j.patcog.2017.06.023.

A. P. Windarto, “Implementation of Data Mining on Rice Imports by Major Country of Origin Using Algorithm Using K-Means Clustering Method,” Int. J. Artif. Intell. Res., vol. 1, no. 2, p. 26, 2017, doi: 10.29099/ijair.v1i2.17.

S. Wang et al., “K-Means Clustering With Incomplete Data,” IEEE Access, vol. 7, pp. 69162–69171, 2019, doi: 10.1109/ACCESS.2019.2910287.

H. Xie et al., “Improving K-Means clustering with enhanced Firefly Algorithms,” Appl. Soft Comput. J., vol. 84, p. 105763, 2019, doi: 10.1016/j.asoc.2019.105763.

Yuda Irawan, “Implementation Of Data Mining For Determining Majors Using K-Means Algorithm In Students Of SMA Negeri 1 Pangkalan Kerinci,” J. Appl. Eng. Technol. Sci., vol. 1, no. 1, pp. 17–29, 2019, doi: 10.37385/jaets.v1i1.18.

T. Li, Y. Ma, and T. Endoh, “Normalization-based validity index of adaptive K-Means clustering for multi-solution application,” IEEE Access, vol. 8, pp. 9403–9419, 2020, doi: 10.1109/ACCESS.2020.2964763.

C. Xia, J. Hua, W. Tong, and S. Zhong, “Distributed K-Means clustering guaranteeing local differential privacy,” Comput. Secur., vol. 90, 2020, doi: 10.1016/j.cose.2019.101699.

J. Chen, X. Qi, L. Chen, F. Chen, and G. Cheng, “Quantum-inspired ant lion optimized hybrid K-Means for cluster analysis and intrusion detection,” Knowledge-Based Syst., vol. 203, p. 106167, 2020, doi: 10.1016/j.knosys.2020.106167.

A. Kaur, S. K. Pal, and A. P. Singh, “Hybridization of Chaos and Flower Pollination Algorithm over K-Means for data clustering,” Appl. Soft Comput., vol. 97, no. xxxx, p. 105523, 2020, doi: 10.1016/j.asoc.2019.105523.

H. H. Zhao, X. C. Luo, R. Ma, and X. Lu, “An Extended Regularized K-Means Clustering Approach for High-Dimensional Customer Segmentation with Correlated Variables,” IEEE Access, vol. 9, pp. 48405–48412, 2021, doi: 10.1109/ACCESS.2021.3067499.

X. Wang, Z. Wang, M. Sheng, Q. Li, and W. Sheng, “An adaptive and opposite K-Means operation based memetic algorithm for data clustering,” Neurocomputing, vol. 437, pp. 131–142, 2021, doi: 10.1016/j.neucom.2021.01.056.

Y. Fan et al., “PPMCK: Privacy-preserving multi-party computing for K-Means clustering,” J. Parallel Distrib. Comput., vol. 154, pp. 54–63, 2021, doi: 10.1016/j.jpdc.2021.03.009.

A. Rizwan, N. Iqbal, A. N. Khan, R. Ahmad, and D. H. Kim, “Toward Effective Pattern Recognition Based on Enhanced Weighted K-Mean Clustering Algorithm for Groundwater Resource Planning in Point Cloud,” IEEE Access, vol. 9, pp. 130154–130169, 2021, doi: 10.1109/ACCESS.2021.3111112.

S. Huang, Z. Kang, Z. Xu, and Q. Liu, “Robust deep K-Means: An effective and simple method for data clustering,” Pattern Recognit., vol. 117, p. 107996, 2021, doi: 10.1016/j.patcog.2021.107996.

Diterbitkan

2022-10-30

Cara Mengutip

[1]
“TINJAUAN PUSTAKA SISTEMATIS: PENERAPAN DATA MINING TEKNIK CLUSTERING ALGORITMA K-MEANS”, Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 10, no. 2, hlm. 52–61, Okt 2022, doi: 10.21063/jtif.2022.V10.2.52-61.