ANALISIS LAHAN DAN REKOMENDASI TANAMAN PADA SISTEM PERTANIAN CERDAS BERBASIS IoT (Kasus : Lahan Petani Durian Tarung, Kec. Kuranji, Kota Padang)
Keywords:
Land analysis, crop recommendation, wireless sensor (WSN), Internet of Things (IoT)Abstract
Technology-based agriculture is a modern approach that utilises the Internet of Things (IoT) to efficiently support the production process. In Kampung Durian Tarung, Pasar Ambacang, Kuranji, Padang, West Sumatra, a group of horticultural farmers face challenges in determining the type of plants that are suitable for the soil quality of their land. This research develops an IoT-based system for land analysis that can recommend optimal crop types according to soil conditions. IoT technology is implemented to collect soil data, such as pH, moisture, and soil temperature, through wireless sensors. The data is analysed using a fuzzy method, which enables decision-making based on a number of soil quality parameters to provide more precise and real-time recommendations. The trial results show that the system is able to accurately measure soil conditions and provide appropriate crop recommendations based on the soil quality data obtained. The use of fuzzy methods proved effective in filtering data from sensors and adjusting crop recommendations based on threshold values on pH, humidity, and soil temperature. This research contributes to the field of smart agriculture by presenting an IoT-based solution specific to the needs of local horticulture farmers. Combining wireless sensor technology and fuzzy methods enables analyses that are more adaptive and relevant to the soil conditions on the farm. The success of this research provides direction for the development of similar systems that can be applied in other regions, and underlines the role of IoT technology in supporting agricultural sustainability through optimal utilisation of data.
References
Soetriono, A. Suwandari. (2016). Pengantar Ilmu Pertanian. Malang: Intimedia Kelompok Intrans Publishing.
Bhagat, R., & Kumar, N. (2021). IoT-based Temperature Monitoring System for Agricultural Environment: A Case Study on Smart Farming. Journal of Agricultural Informatics, 12(3), 89-102.
Minerva, R., Biru, A., & Rotondi, D. Towards a Definition of the Internet of Things (IoT). (2015). IEEE Internet Initiative.
Bahga, A., & Madisetti, V. Internet of Things: A Hands-On Approach. (2014). Arshdeep Bahga and Vijay Madisetti.
Kim, J., & Evans, R. G. (2009). Wireless Sensor Networks for Monitoring Soil and Crop Conditions for Smart Farming Applications. Irrigation Science, 27(4), 303-314.
Yang, G., & Han, F. (2018). Application of pH Sensors in Precision Agriculture: A Review. Sensors and Actuators B: Chemical, 274, 190-200.
Kumar, R., & Patel, R. (2019). Development and Implementation of IoT-based Soil pH and Moisture Sensing System for Precision Agriculture. Journal of IoT and Agriculture, 7(3), 123-131.
Buyya, R., & Dastjerdi, A. V. Internet of Things: Principles and Paradigms. (2016). Elsevier.
Patil, V. C., Kale, S. B., & Mungale, D. (2020). Fuzzy-based Decision Support System for Crop Selection under Climate-Sensitive Farming. Journal of Agriculture and Environment for International Development, 114(2), 69-81. doi:10.36253/jaeid-8321.
Shamshiri, R. R., Kalantari, F., Ting, K. C., Thorp, K. R., Hameed, I. A., Weltzien, C., Balasundram, S. K., Yusof, M. L. M., & Ahmad, D. (2018). A review of optimum parameter values for precision agriculture and smart farming with a specific focus on rice and paddy production. Precision Agriculture, 19(6), 1111-1147. doi:10.1007/s11119-018-9578-3.
Dargie, W., & Poellabauer, C. Fundamentals of Wireless Sensor Networks: Theory and Practice. (2010). John Wiley & Sons.
Naik, R., & Swamy, M. N. (2020). IoT-based Real-Time Monitoring and Automation in Smart Farming using ESP8266 Module. International Journal of Recent Technology and Engineering, 8(6), 149-155.
Wasista, S., Setiawardhana, Saraswati, D. A., & Susanto, E. Aplikasi Internet of Things (IoT)dengan ARDUINO dan ANDROID.yogyakarta: Deepublish. hal 1. 2019
Amirin Mukminin, Heru Agus Santoso, Catur Supriyanto. Analisis Perancangan Model Fuzzy untuk Sistem Pakar Pendeteksi Tingkat Kesuburan Tanah dan Jenis Tanaman. Jurnal Teknologi Informasi, 2017 Vol.13 no 1.
Moch. Yanuariadin Pujo Kuswantoro, Ratih Kumalasari Niswatin, Intan Nur Farida. Sistem Rekomendasi Tanaman Pertanian Berbasis IOT. Semnas Inotek, 2020, Vol. 4 No. 3.
Abdillah, Ikhsan Rancang Bangun Alat Purwarupa Rekomendasi Tanaman Sayuran Berdasarkan Ph Dan Jenis Tanah Berbasis Iot. Other thesis, Universitas Komputer Indonesia, 2019.
Saputra, A. (2016). Sistem Pendukung Keputusan Pemilihan Penerima Bantuan Sosial Menggunakan Metode Fuzzy database Model Tahani. Techno.COM, 32-42.
Eldi Gunawan. Potensi Produksi Tanaman Kubis (Barassica Oleracea L ) Di Dataran Tinggi Desa Bonto Marannu Kecamatan Ulu Ere Kabupaten Bantaeng. 2022
Wahyudin, A. ∙ Y. Yuwariah ∙ F.Y. Wicaksono ∙ R.A.G. Bajri. Respons jagung (Zea mays l.) akibat jarak tanam pada sistem tanam legowo (2:1) dan berbagai dosis pupuk nitrogen pada tanah inceptisol Jatinangor. Jurnal Kultivasi, 2017 Vol. 16 (3).
Husnun Nadzif, Tatyantoro Andrasto, Selamet Aprilian. Sistem Monitoring Kelembaban Tanah dan Kendali Pompa Air Menggunakan Arduino dan Internet. Jurnal Teknik Elektro, 2019, Vol. 11 No. 1.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Muhammad Vajri Djauhari, Busran Busran, Eva Yulianti, Eko Kurniawanto Putra, Anna Syahrani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.